4729 measured reflections

 $R_{\rm int} = 0.037$

1722 independent reflections

1375 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,6'-Dibromo-4,4'-dimethyl-3,3'-methylenebi(2H,4H-benz[e][1,3]oxazine)

Guang-You Zhang, Ming Li,* Wan-Hui Wang and **Zhen-Wang Qian**

School of Chemistry and Chemical Engineering, University of Jinan, 250022, People's Republic of China Correspondence e-mail: chem_liming@163.com

Received 14 June 2007; accepted 6 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.075; data-to-parameter ratio = 15.0.

In the title compound, C₁₉H₂₀Br₂N₂O₂, a crystallographic twofold rotation axis passes through the central C atom. The crystal structure is stabilized by weak C-H···N and intermolecular C-H···O hydrogen bonds.

Related literature

For related literature, see: Allen et al. (1987); Domenicano et al. (1975); Yang et al. (2005).

Experimental

Crystal data

$C_{19}H_{20}Br_2N_2O_2$
$M_r = 468.19$
Monoclinic, C2/c
a = 19.826 (4) Å
b = 11.702 (2) Å
c = 8.146 (2) Å
$\beta = 99.92 \ (3)^{\circ}$

V = 1861.7 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 4.37 \text{ mm}^{-1}$ T = 298 (2) K $0.35 \times 0.24 \times 0.18 \text{ mm}$

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.298, T_{\max} = 0.459
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	115 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
1722 reflections	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C7 - H7 \cdots N1^{i}$ $C9 - H9B \cdots O1^{ii}$ $C9 - H9A \cdots O1^{iii}$	0.98 0.97 0.97	2.51 2.56 2.56	2.943 (3) 3.418 (4) 3.418 (4)	107 147 147
Symmetry codes: $x, -y + 2, z - \frac{1}{2}$.	(i) $-x + 1$,	$y, -z + \frac{1}{2};$ (ii)	-x + 1, -y + 2	2, -z + 1; (iii)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

The authors are grateful to the Science Foundation of the University of Jinan for Doctors (grant No. B0001) for financial support. X-ray data were collected at Taishan University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2184).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1997). SMART, SAINT and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Domenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221-234
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.

Acta Cryst. (2007). E63, o3483 [doi:10.1107/S1600536807033089]

6,6'-Dibromo-4,4'-dimethyl-3,3'-methylenebi(2H,4H-benz[e][1,3]oxazine)

G.-Y. Zhang, M. Li, W.-H. Wang and Z.-W. Qian

Comment

The title compound, (I), was prepared by reaction of racemic 2-(1-aminoethyl)-4-bromophenol, (II), with formaldehyde.

The molecule is centrosymmetric. The bond lengths observed in the two phenyl rings agree with eath other and are comparable with average values reported in the literature (Domenicano *et al.*, 1975; Allen *et al.*, 1987). The dihedral between the C1—C6 and C1a—C6a aromatic rings is 65.89 (2)°.

The molecules are linked *via* C—H···N hydrogen bonds into cyclic $R^2_2(6)$ dimers (Fig. 2). The hydrogen bonds observed in the structure are listed in Table 2.

Experimental

The title compound was prepared according to the procedure of Xiao-Feng Yang *et al.* (2005). A methanol solution (10 ml) of ammonia (0.9 mmol) and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.9 mmol) wasreacted at room temperature for 24 h. After removal of the solvent, NaBH₄ (4.5 mmol) was added to the solution in THF/ethanol (20 ml; 1:1v/v) and stirred at 0°C until the solution became colorless. The solvent was removed under reduced pressure. Water (10 ml) was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na₂CO₃, then extracted with CHCl₃, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give colorless solid (II), yield of 90.3%. The compound (II) was reacted with formaldehyde (1.2 equivalents) in a methanol solution (10 ml). Evaporation of a methanol solution at room temperature gave crystals of (I) (m.p.675–676 K) IR (KBr): 3443 (*s*), 2974 (*m*), 1481 (*s*), 1255 (*s*), 1178 (*m*), 970 (*m*), 628 (w) cm⁻¹.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H(methyl) = 0.96 Å, C—H(methylene) = 0.97 Å, C—H(methine) = 0.98 Å, C—H(aromatic) = 0.93 Å, and with $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ and $1.2U_{eq}(C_{aromatic}, C_{methylene}, C_{methine})$.

6,6'-Dibromo-4,4'-dimethyl-3,3'-methylenebi(2H,4H- benz[e][1,3]oxazine)

Crystal data	
$C_{19}H_{20}Br_2N_2O_2$	$F_{000} = 936$
$M_r = 468.19$	$D_{\rm x} = 1.670 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -C2yc	Cell parameters from 1722 reflections
a = 19.826 (4) Å	$\theta = 2.0 - 25.5^{\circ}$
b = 11.702 (2) Å	$\mu = 4.37 \text{ mm}^{-1}$
c = 8.146 (2) Å	T = 298 (2) K
$\beta = 99.92 \ (3)^{\circ}$	Block, colourless
$V = 1861.7 (6) \text{ Å}^3$	$0.35 \times 0.24 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	1722 independent reflections
Radiation source: fine-focus sealed tube	1375 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 298(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -24 \rightarrow 24$
$T_{\min} = 0.298, T_{\max} = 0.459$	$k = -8 \rightarrow 14$
4729 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0208P)^2 + 3.2728P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.001$
1722 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
115 parameters	$\Delta \rho_{min} = -0.64 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.36058 (15)	0.8872 (3)	0.4372 (4)	0.0422 (7)	
C2	0.30490 (16)	0.9531 (3)	0.4563 (4)	0.0505 (8)	
H2	0.3107	1.0181	0.5230	0.061*	
C3	0.24080 (16)	0.9226 (3)	0.3766 (4)	0.0500 (8)	
Н3	0.2028	0.9665	0.3881	0.060*	

0.23362 (15)	0.8261 (3)	0.2796 (4)	0.0441 (7)	
0.28870 (15)	0.7600 (3)	0.2608 (4)	0.0417 (7)	
0.2824	0.6952	0.1937	0.050*	
0.35394 (14)	0.7891 (3)	0.3412 (4)	0.0382 (7)	
0.41513 (14)	0.7178 (3)	0.3189 (4)	0.0411 (7)	
0.4123	0.7042	0.1993	0.049*	
0.41674 (18)	0.6022 (3)	0.4034 (5)	0.0614 (10)	
0.4539	0.5578	0.3756	0.092*	
0.3743	0.5631	0.3662	0.092*	
0.4230	0.6126	0.5220	0.092*	
0.5000	0.8533 (4)	0.2500	0.0412 (10)	
0.4622	0.9018	0.2008	0.049*	0.50
0.5378	0.9018	0.2992	0.049*	0.50
0.47610 (15)	0.8379 (3)	0.5288 (4)	0.0479 (8)	
0.5201	0.8735	0.5682	0.057*	
0.4685	0.7815	0.6110	0.057*	
0.145465 (16)	0.78480 (4)	0.16417 (5)	0.06290 (17)	
0.47908 (12)	0.7813 (2)	0.3773 (3)	0.0406 (6)	
0.42328 (10)	0.9242 (2)	0.5178 (3)	0.0512 (6)	
	0.23362 (15) 0.28870 (15) 0.2824 0.35394 (14) 0.41513 (14) 0.4123 0.41674 (18) 0.4539 0.3743 0.4230 0.5000 0.4622 0.5378 0.47610 (15) 0.5201 0.4685 0.145465 (16) 0.47908 (12) 0.42328 (10)	0.23362 (15)0.8261 (3)0.28870 (15)0.7600 (3)0.28240.69520.35394 (14)0.7891 (3)0.41513 (14)0.7178 (3)0.41230.70420.41674 (18)0.6022 (3)0.45390.55780.37430.56310.42300.61260.50000.8533 (4)0.46220.90180.53780.90180.47610 (15)0.8379 (3)0.52010.78150.145465 (16)0.78480 (4)0.47908 (12)0.7813 (2)0.42328 (10)0.9242 (2)	0.23362 (15)0.8261 (3)0.2796 (4)0.28870 (15)0.7600 (3)0.2608 (4)0.28240.69520.19370.35394 (14)0.7891 (3)0.3412 (4)0.41513 (14)0.7178 (3)0.3189 (4)0.41230.70420.19930.41674 (18)0.6022 (3)0.4034 (5)0.45390.55780.37560.37430.56310.36620.42300.61260.52200.50000.8533 (4)0.25000.46220.90180.20080.53780.90180.29920.47610 (15)0.8379 (3)0.5288 (4)0.52010.78150.61100.145465 (16)0.78480 (4)0.16417 (5)0.47908 (12)0.7813 (2)0.3773 (3)0.42328 (10)0.9242 (2)0.5178 (3)	0.23362 (15)0.8261 (3)0.2796 (4)0.0441 (7)0.28870 (15)0.7600 (3)0.2608 (4)0.0417 (7)0.28240.69520.19370.050*0.35394 (14)0.7891 (3)0.3412 (4)0.0382 (7)0.41513 (14)0.7178 (3)0.3189 (4)0.0411 (7)0.41230.70420.19930.049*0.41674 (18)0.6022 (3)0.4034 (5)0.0614 (10)0.45390.55780.37560.092*0.37430.56310.36620.092*0.42300.61260.52200.092*0.50000.8533 (4)0.25000.0412 (10)0.46220.90180.20080.049*0.53780.90180.29920.049*0.52010.87350.56820.057*0.46850.78150.61100.057*0.145465 (16)0.78480 (4)0.16417 (5)0.06290 (17)0.47908 (12)0.7813 (2)0.3773 (3)0.0406 (6)0.42328 (10)0.9242 (2)0.5178 (3)0.512 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0390 (16)	0.0488 (19)	0.0379 (17)	-0.0068 (14)	0.0040 (13)	-0.0015 (15)
C2	0.0505 (19)	0.0478 (19)	0.053 (2)	-0.0010 (16)	0.0093 (16)	-0.0110 (16)
C3	0.0413 (17)	0.054 (2)	0.055 (2)	0.0053 (15)	0.0099 (15)	0.0014 (17)
C4	0.0380 (16)	0.0527 (19)	0.0396 (17)	-0.0053 (14)	0.0014 (13)	0.0060 (15)
C5	0.0386 (16)	0.0472 (18)	0.0383 (17)	-0.0048 (14)	0.0035 (13)	-0.0033 (14)
C6	0.0379 (15)	0.0436 (17)	0.0330 (15)	-0.0043 (13)	0.0055 (12)	0.0012 (14)
C7	0.0360 (15)	0.0451 (18)	0.0408 (17)	-0.0030 (13)	0.0029 (13)	-0.0057 (14)
C8	0.052 (2)	0.047 (2)	0.085 (3)	-0.0017 (16)	0.0106 (18)	0.003 (2)
C9	0.037 (2)	0.045 (3)	0.040 (2)	0.000	0.0048 (18)	0.000
C10	0.0392 (16)	0.066 (2)	0.0357 (17)	-0.0054 (16)	-0.0022 (13)	-0.0020 (16)
Br1	0.03772 (19)	0.0865 (3)	0.0605 (3)	-0.00454 (18)	-0.00279 (15)	-0.0045 (2)
N1	0.0344 (12)	0.0502 (15)	0.0355 (14)	-0.0024 (11)	0.0015 (10)	-0.0022 (12)
01	0.0392 (12)	0.0619 (15)	0.0511 (14)	-0.0078 (10)	0.0037 (10)	-0.0213 (11)

Geometric parameters (Å, °)

C1—O1	1.372 (3)	C7—C8	1.515 (4)
C1—C2	1.377 (4)	С7—Н7	0.9800
C1—C6	1.383 (4)	C8—H8A	0.9600
C2—C3	1.371 (4)	C8—H8B	0.9600
С2—Н2	0.9300	C8—H8C	0.9600
C3—C4	1.371 (5)	C9—N1 ⁱ	1.451 (4)
С3—Н3	0.9300	C9—N1	1.451 (4)
C4—C5	1.368 (4)	С9—Н9А	0.9700
C4—Br1	1.899 (3)	С9—Н9В	0.9700

C5—C6	1.388 (4)	C10—N1	1.410 (4)
С5—Н5	0.9300	C10—O1	1.447 (4)
C6—C7	1.509 (4)	C10—H10A	0.9700
C7—N1	1.476 (4)	C10—H10B	0.9700
01—C1—C2	116.6 (3)	С8—С7—Н7	107.5
O1—C1—C6	121.5 (3)	С7—С8—Н8А	109.5
C2—C1—C6	121.9 (3)	С7—С8—Н8В	109.5
C3—C2—C1	119.7 (3)	H8A—C8—H8B	109.5
С3—С2—Н2	120.1	С7—С8—Н8С	109.5
С1—С2—Н2	120.1	H8A—C8—H8C	109.5
C4—C3—C2	118.9 (3)	H8B—C8—H8C	109.5
С4—С3—Н3	120.5	N1 ⁱ —C9—N1	109.1 (3)
С2—С3—Н3	120.5	N1 ⁱ —C9—H9A	109.9
C5—C4—C3	121.6 (3)	N1—C9—H9A	109.9
C5—C4—Br1	119.0 (2)	N1 ⁱ —C9—H9B	109.9
C3—C4—Br1	119.3 (2)	N1—C9—H9B	109.9
C4—C5—C6	120.3 (3)	Н9А—С9—Н9В	108.3
С4—С5—Н5	119.8	N1—C10—O1	114.3 (2)
С6—С5—Н5	119.8	N1—C10—H10A	108.7
C1—C6—C5	117.5 (3)	O1—C10—H10A	108.7
C1—C6—C7	121.8 (3)	N1-C10-H10B	108.7
C5—C6—C7	120.7 (3)	O1—C10—H10B	108.7
N1—C7—C6	110.3 (2)	H10A—C10—H10B	107.6
N1—C7—C8	110.7 (2)	C10—N1—C9	114.4 (3)
C6—C7—C8	113.2 (3)	C10—N1—C7	110.8 (2)
N1—C7—H7	107.5	C9—N1—C7	113.4 (2)
С6—С7—Н7	107.5	C1—O1—C10	113.3 (2)
O1—C1—C2—C3	178.7 (3)	C5—C6—C7—N1	164.6 (3)
C6—C1—C2—C3	-1.0 (5)	C1—C6—C7—C8	111.4 (3)
C1—C2—C3—C4	0.3 (5)	C5—C6—C7—C8	-70.8 (4)
C2—C3—C4—C5	0.0 (5)	O1—C10—N1—C9	66.8 (3)
C2—C3—C4—Br1	-178.5 (3)	O1—C10—N1—C7	-63.0(3)
C3—C4—C5—C6	0.4 (5)	N1 ⁱ —C9—N1—C10	163.0 (2)
Br1-C4-C5-C6	178.9 (2)	N1 ⁱ —C9—N1—C7	-68.6 (2)
O1—C1—C6—C5	-178.3 (3)	C6—C7—N1—C10	42.8 (3)
C2-C1-C6-C5	1.4 (5)	C8—C7—N1—C10	-83.2 (3)
O1—C1—C6—C7	-0.4 (5)	C6—C7—N1—C9	-87.5 (3)
C2—C1—C6—C7	179.3 (3)	C8—C7—N1—C9	146.5 (3)
C4—C5—C6—C1	-1.0 (5)	C2—C1—O1—C10	164.8 (3)
C4—C5—C6—C7	-179.0 (3)	C6—C1—O1—C10	-15.5 (4)
C1—C6—C7—N1	-13.2 (4)	N1—C10—O1—C1	48.1 (4)

Symmetry codes: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C7—H7···N1 ⁱ	0.98	2.51	2.943 (3)	107

C9—H9B···O1 ⁱⁱ	0.97	2.56	3.418 (4)	147
C9—H9A…O1 ⁱⁱⁱ	0.97	2.56	3.418 (4)	147
Symmetry codes: (i) $-x+1$, y , $-z+1/2$; (ii) $-x+1$, $-y+2$, $-z+1$; (iii) x , $-y+2$, $z-1/2$.				

a 0 b

Fig. 3